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Abstract 

The B meson decay constant can be measured on the lattice using the static effective 
field theory. We present the order as comparison of the matrix elements of heavy- 
light bilinears measured on the lattice using Wilson fermions to their counterparts in 
the continuum. The time component of the axial current determines fs. A subtlety 
associated with a linear divergence in the heavy quark self-energy is discussed. 
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It is presently not possible to do numerical simulations of QCD on lattices much 

larger than 24s x 48. Thus, requiring a spatial extent of two Ferrnis implies that the 

lattice spacing cannot be much less than (2GeV)-I. Under these circumstances it is 

impossible to directly simulate arbitrary processes involving b quarks. However for 

several matrix elements, including that which determines f~, the large rest energy 

of the b quark is not deposited into lighter hadrons. For these matrix elements an 

effective field theory has been proposed in which all the dependence on the large rest 

mass of the heavy quark has been removed analytically. The effective field theory 

is based on the zeroth order approximation in an expansion in the heavy quark’s 

kinetic energy or spatial momentum over its rest energy, termed the l/m expansion. 

The effective field theory action is presented in reference [l], which brings together 

lines developed by Eichten and Feinberg [2], Caswell and Lepage [3] and Politzer and 

Wise [4]. The remaining scales are then small enough that these matrix elements 

can be calculated reliably on the 1attice.t 

Since the quantity measured numerically is a matrix element of the lattice- 

regularized bare operator in the effective theory, the ratio of the matrix element 

of the lattice operator to its renormalized counterpart in the full theory must be 

calculated [7][8]. Since the origin of the difference in normalization is a difference in 

ultraviolet behavior and regulators, the comparison can be done reliably in pertur- 

bation theory. The comparison is most easily done in two steps. First the lattice 

operator is related to an operator in the effective field theory with a more convenient 

regularization and renormalization prescription. Then the operator in the effective 

theory is related to the operator in the full theory. 

We perform this calculation for an arbitrary bilinear made out of a heavy quark 

treated in the static approximation and a light quark treated as a Wilson fermion. 

We begin by writing down a discretization of the Euclidean static effective field 

theory action and giving the Feynman rules for lattice perturbation theory. We 

then display one of the order a~ calculations in detail. The calculation uses the 

techniques and results developed in reference [I]. A result for the time component 

of the axial current, the bilinear used to determine fB, has been obtained by a 

t An alternative procedure for measuring heavy meson decay constants on the 

lattice [5] should be noted: Measure the meson decay constant as a function of 

meson mass up to meson masses for which corrections proportional to the heavy 

quark mass over the lattice cutoff become significant. Then extrapolate from these 

values using the scaling laws [4][6] for heavy-light systems to obtain the B meson 

decay constant. 
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different method by Boucaud, Lin and P&e 191. 0 ur results differ from theirs. We 

conclude by discussing a subtlety in taking the continuum limit associated with 

linear divergences in the self-energy of the heavy quark. 

The Euclidean static effective field theory Lagrangian is [I] 

.C = bt (&, + gAo) b. (1) 

The two-component field b annihilates heavy quarks and bt creates them. Note 

that a fixed momentum (m, 0) has been removed from the momentum of the heavy 

quark. Many discretizations of the action with the same naive continuum limit are 

possible. We make the following choice: 

S = ia -& [at(n) (b(n) - U&d)tb(n-6))]. (2) 

This action reproduces the position space propagator previously suggested for use 

in lattice gauge theory calculations [lo] which is being used in numerical simula- 

tions [ll]. There is no doubling problem as would occur with a symmetric derivative. 

The most general heavy-light bilinear in the full theory is @q. l? is any Dirac 

matrix, and 4 is the light quark field. Parametrize l? by two-by-two blocks: 

The corresponding operator in the effective theory is 

The obvious choice of discretization of this operator is the zero distance bilinear 

b+(,)(, k%(n). (5) 

The light quark will be treated as a Wilson fermion. In reference [12], the light 

quark is treated as a staggered fermion. 

The free propagator in momentum space derived from the discretieed Euclidean 

action is 
1 

-;(eGJoa - 1) + ic’ (6) 

Even in Euclidean space the pole prescription is necessary [l]. The interactions are 

obtained by writing 

qn-~) = eigaMn-@ (7) 

2 



and expanding the exponential in a power series. Calculations to order as only 

require the first two terms in the expansion. The order g term produces the gluon- 

heavy quark vertices in the diagrams depicted in figures 1 and 2. The order g2 term 

produces the vertex depicted in figure 3. 

When fixing the relative normalization of an operator defined in two different 

regularisations, it is important to calculate the same unambiguous quantity in the 

two schemes. We will take a matrix element of the heavy-light bilinear between an 

incoming light quark and an outgoing heavy quark. For calculational convenience, 

we will set the light quark mass to zero, and take our mass shell point to be where the 

incoming and outgoing momenta are zero. The infrared divergences which appear 

at zero external momenta are eliminated by giving the gluon a mass, X. No problem 

with a gluon mass arises in one loop, because the required diagrams are QED-like. 

For a nice review of this procedure, including a comparison of matrix elements 

measured on the lattice with the continuum in a case without heavy quarks where 

the result is known, see reference [7]. 

To calculate the matrix elements, we need the vertex correction graphs in 

the lattice effective theory, the continuum effective theory and the continuum full 

theory, and the self-energy graphs for the heavy quark and the light quark in the 

three theories. Light quark wave function renormalization is standard [13], and all 

the continuum computations were done in [l]. So it remains only to calculate the 

vertex correction graph and the heavy quark self-energy graphs on the lattice. 

We simply quote the result for the vertex correction graph, fig. 1. The result is 

6 (-lnX2a2+d) 

times the zeroth order result. For a general bilinear, we write d = dl+&G, where 

G is defined by Gr = yol?yo. We used the method of isolating a ---t 0 divergences 

introduced by Bernard, Soni and Draper [14], and evaluated the residual integrals 

for several values of the Wilson mass coefficient T with VEGAS [15). The results 

for dl and dz are tabulated below. 

We will evaluate the heavy quark self energy graph of figure 2 in sufficient 

detail to expose our method. The integral for this graph is 

4,d 
J 

@I 
3 a (2X)4= 

qpoa + lo) 1 1 

Ag(l -pa) + J,Z$ -i(eizo - 1) +ic’ 
(9) 

where A,(l) = C, 4 sin’(Z,/2). The ph ases in the numerator are present because 

the action contains interactions of fields with one site difference in their arguments. 
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The integration region is [-x, r]*. The external momentum is routed through the 

gluon propagator to avoid differentiating the non-covariant pole when obtaining 

wave function renormalization. The p dependence is illusory. 

To obtain the contribution to wave function renormalization from the graph in 

figure 2, take the derivative of the self-energy correction, equation (9), with respect 

to po at zero momentum. The result from differentiating eiPoa is 

4. 2 J d41 il,, 1 1 

P me 
44) + X 2a2 -i(& - 1) + ic’ 

Now replace the gluon propagator in this result by 

1 1 1 

A,(Z) + XZaZ - A,(O, 1) + X2a2 + AJO, 1) + Xza2 ’ 

(10) 

(11) 

The term we have subtracted and added has been chosen to isolate the noncovariant 

pole and for ease of integration. In the difference, we don’t have to worry about 

the ic prescription. We simplify by symmetrizing under lo --+ -lo. No singularities 

are encountered as X + 0, and we obtain integrals easy to evaluate numerically[l5]. 

The term added back in factors into an ZO integration and an 1 integration. The lo 

integration is shown to vanish by contour integration. There is still a contribution 

to wave function renormalization obtained from differentiating the gluon propagator 

with respect to po. After differentiation, it is seen that this term has a factor of 

sin Z0/2 in the numerator, so the ic prescription is unnecessary. One can extract the 

dependence on a as a -+ 0 easily, again leaving integrals to evaluate numerically. 

The other graph contributing to heavy quark wave function renormalization, 

figure 3, is easy enough that we present it’s evaluation completely. The integral is 

2. 21 i 
-izg -epoa 

J 
--. 

a ($ A;(Z) 02) 

Take the derivative with respect to po at zero momentum to isolate the contribution 

to wave function renormalization. We obtain 

(13) 

The result of the numerical evaluation of this integral is g2/12?rz times 12.23. The 

spherical symmetry of continuum integrals makes one expect results of gz/12$ 

times a number of order one. However in lattice perturbation theory there is no 

spherical symmetry; integrands are order one right to the edges of the Brillouin 

zone, and tadpole graphs frequently give such large coefficients. 

4 



We summarize the heavy quark self energy results by writing the wave function 

renormalization as 

&(- 2 In X2a2 + e) 

The full result from both graphs is e = 24.48. 

The light quark self energy graphs which are required for the matrix element 

are standard [13]. We parametrize them as 

& (In XZa2 + f). 

The numerically evaluated constant f is also tabulated for several values off. Errors 

for dl, dzr e and f are at most 0(l) in the last decimal place. 

0.00 8.79 0.00 6.54 

The corresponding graphs in the continuum effective field theory with dimen- 
- 

sional regularization and MS with a scale p have the same form as expressions (8), 

(14), and (15). The only changes are that l/p replaces a and the constant term 

differs. The constant corresponding to d we call D, and the constant corresponding 

to e is E. In reference [l], D = 1 and E = 0. We find the constant corresponding to 

f, F, is l/2. 

To order a~ the ratio of a matrix element of a bilinear in the lattice regulated 

static effective field theory to that in the dimensionally regularized effective theory 

is then 

1+ g2 -~++e+;f-(D+;E+;F)]. 
12a2 (1‘5) 

The ratio of the operators could not depend on X since the lambda dependence 

must be the same for the two different regulators. Similarly, if we hadn’t set the 

light quark mass to zero, dependence on it would have had to drop out of the ratio. 

Thus the result only depends on the scales ~1 and a, it is dimensionless, and the 

dependence on pa has been eliminated by setting p = l/a. 

To use (16) to get the ratio of the matrix element of the the bilinear in the 
- 

lattice regulated effective theory to the MS subtracted bilinear in the full theory, 
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- 
we need the ratio of the MS subtracted bilinear in the continuum effective theory 

- 
to the MS subtracted bilinear in the full theory calculated in [l]. It is 

l-92 
12x2 ( 

CI In $ +CZ , 
1 

(17) 

where Cl = 512%Hz/4 and Cz = -4+3H2/4-HH’-GH/2. H is defined by HFEr = 

YJYrr and H’ is the derivative with respect to d of H in d dimensions. For the 

case of the time component of the axial current, the bilinear used to determine IB, 

G = -1 and H = 2. If we use the extension of the gamma matrix algebra that ys 

anticommutes with all the Y,,, 1 5 p 5 d, then H’ = 1. So in this case, we have 

Ci = 3/2 and Cr = -2. These two numbers can be extracted from equations (2.10) 

and (2.30) of Boucaud, Lin and Pkne [9], and we agree. 

Continuing the comparison for this special case, we find from the table above 

for T = 1 that d = 12.68, e = 24.48 and f = 13.35. Boucaud Lin and P&e [9] 

found 2(d-D)/3 = 2.97, (e-E)/3 = 0.17 and (f-F)/3 = 4.29. Our results for these 

combinations are 7.79, 8.16 and 4.28 respectively. Only the result for f agrees. 

Evaluating expression (16) for p E 6/g’ = 6.0 using our results gives 1.26. Using the 

continuum value of as with AQCD = 250MeV f or four active quarks, p = 2 GeV, 

and m = 5GeV we find that expression (17) is 0.97. Taking the product of the 

two ratios, we find that the value of f~ measured on a 2GeV lattice using the 

static approximation should be reduced by a factor of 1.22. The largest source of 

uncertainty in this result is the choice of the value of as to use in the continuum 

effective theory to lattice effective theory matching. At p = 2 GeV, the lattice value 

of as is smaller than the continuum value by a factor of 2.7 [7]. Using the continuum 

value of CYS in this matching would thus result in a substantially larger reduction 

factor for fB. 
One part of the discrepancy in e between this work and the previous work 

brings up an interesting subtlety which we will explore and resolve in the rest of 

this paper. Define Ge(ns) by 

&GB(~o) = (JAMB), 
where JB denotes the discretisation, (5), of the time component of the axial cur- 

rent. In their position space calculation, Boucaud, Lin and P&e [9] found that 

the tadpole graph gives a contribution to (18) proportional to rze times the O(g”) 

result, which leads them to conclude that the tadpole graph only contributes to 

mass renormalization and not to wave function renormalization (see the text below 
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equation (C22) of their paper). However, if the action is modified to include mass 

and wave function renormalization 

SR = ia En [zb+(n) (b(n) - U,(rd)+b(n-6)) + ah b+(n)b(n)] (19) 

one finds that the correction of order 6m is proportional to no+l, so the tadpole 

graph cannot be completely absorbed by mass renormalization. While the differ- 

ence between no and no+1 is naively irrelevant in the continuum limit, the tadpole 

graph is linearly divergent, and there is a finite contribution to wave function renor- 

malization, as we found in equation (13). 

This linear divergence requires the reconsideration of other usual assumptions. 

In particular, Boucaud and P&e [16] raise the issue of whether f~ should be ex- 

tracted from numerical simulations by fitting Gg(n,,) to 

~~-&a, 
(20) 

or to 

~~-B(no+l)a 
(21) 

when using the usual relationship (27) between fs and A. Again, the difference is 

naively irrelevant, but since B contains linear divergences, there is a finite differ- 

ence between the two definitions of A. Now that the issue has been exposed, we 

demonstrate how to resolve it. 

What is measured on the lattice is the correlator of bare operators, Go 

defined in equation (18), using the action (2), which has not been tuned to give cutoff 

independent Green’s functions as the cutoff goes to infinity. Let the renormalized 

current J(n) be defined by 2~J(n) = J&n), and let the correlator of it calculated 

using the renormalieed action (19) be G(no). 2 J is adjusted so that matrix elements 

of J(n) agree with matrix elements of the current in the full theory in the continuum 

renormalized using MS. To order as, ZJ is the product of (16) and (17). It is G(Q) 

for which we can show by inserting a complete set of intermediate states that in the 

limit a + 0. na fixed. 

G(na) = (f;;f)2e-Em~a. 

EB is the energy (not including the rest energy of the heavy quark) of the B meson. 

Here, whether ~~20 or no+1 appears in the exponential is irrelevant since Eg is 

finite as a + 0. In fact, this could be taken to be the renormalization condition 

determining &n. 
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We can obtain the relation between G(no) and Go exactly. First, we give 

a functional integral expression for G( no , suppressing the gauge and light fermion ) 

integrations: 

;E,.,oG(no) = J (db)(db+)J+(n)J(0)e-SR 

J 
(db)(db+)&R 

z 272 J 
(db)(db+)J!,(n)JB(0)e-SB 

J 
(db)(db+)cSB ’ 

(23) 

where we have introduced 

Se = ia En [b+(n) (b(n) - Uo(n-6)tb(n-6)) + (ah/Z) bt(n)b(n)]. (24) 

SB is the renormalized action rewritten in terms of the bare fields. 

Because this functional integral is essentially one-dimensional, one can relate 

it to the functional integral with the action S, defined in equation (2), which repro- 

duces the propagator being used in numerical simulations. One finds 

;6&a) = Zy2 ( 1 + a;m,Z)no+’ “db’)f;;;~;~-$‘e-s (25) 

=Z;2(l+~~m,Z)“o+‘~~.,.GB(~,0). 

Now substitute expression (21) for Gg(n0) and expression (22) for G(no) to get 

(fBmB)‘.-E 
2mB 

BnOa = Zy2 ( 1 + okm,z)no+l Ae-B(nofl), (26) 

The constants Z and 6m are chosen so that the right hand side has a cutoff inde- 

pendent limit as n + 00, na fixed. This implies B + In (l+a 6m/Z) is order a. Call 

the coefficient of the order a term h. Then what we find in the limit is EB = h and 

This is the equation usually used to report fn [ll] and concludes our argument for 

using (21). 

It could be argued that omissions of the form coming from the tadpole graph 

are compensated by the way fB is normally extracted from numerical simulations. 

8 



That is, equation (20) has been used to fit Gs(no). So we note that in that case 

instead of (27), the result would have been 

bmB)2 = z-z 1 

2mB J lfa6m/Z 

A, 
(28) 

There is a residue from the cancellation of the fraction and the exponential, and 

because brn contains linear divergences this results in a different value of fB. 

If one makes the error in analysis of using (20) with (27), it is clear from (28) 

that it can be compensated for in perturbation theory by reducing the value of e by 

an amount taken from the linearly divergent part of mass renormalization. Because 

contributions of the type coming from the tadpole graph contribute the same way 

to 2;’ and aJm, part of the effect is to eliminate the contribution of the tadpole 

graph. We find that the sum of the one-loop contributions to the self-energy which 

must be cancelled by 6m is 

(29) 

12.23 of the constant came from the tadpole graph, and 7.72 from the graph of 

figure 2. The reduced value of e is 4.53, giving (e-E)/3 = 1.51, which comes 

considerably closer to Boucaud, Lin and P&e’s result. If we use the reduced value 

for e, and the same sample values for p and &CD as we did previously, we find that 

the value of f~ measured on the lattice should be divided by 1.14. Boucaud, Lin 

and P&e’s values of d, e and f give 1.06. As noted previously, use of the continuum 

value of CYS would substantially increase this. 

The clear formulation of the static approximation we have used has allowed for a 

simple derivation of the normalization of an arbitrary heavy-light bilinear measured 

on the lattice. The discrepancy with previous work has uncovered a subtlety in the 

extraction of fB from lattice calculations arising from linear divergences in the self- 

energy of the heavy quark. However, even accounting for this effect we are unable 

to reproduce the results of Boucaud, Lin, and P&e [9]. The formulation employed 

here will simplify calculations of the renormalization of other operators and make 

the calculation of l/m and O(a) corrections tractable. 

We would like to thank George Hackney, Andreas Kronfeld, Paul Mackenzie 

and Stephen Sharpe for discussions. We also thank Oscar Hermindez for checking 

our results for the special case of zero Wilson mass coefficient in the course of 

applying the static effective field theory to the measurement of fB with staggered 

fermions [12]. 
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Figure Captions 

Fig. 1: Vertex Correction Graph 

Fig. 2: Self-Energy Correction 

Fig. 3: Tadpole Self-Energy Correction 


